.- AD-A136 375 A HIGH-ORDER TEST FOR OPTIMALITY OF BANG-BANG CONTROLS
: {U) WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER
A BRESSAN NOV 83 MRC-TSR-2596 DAAG29-80-C-0041
UNCLASSIFIED F/G 12/1




IS

=
N2 s W

FEEEEERE
EEEE
EF

]
I.N
o

rrPEEEEE
[ - e Be
£e

iE

B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




MRC Technical Summary Report #2596

A HIGH-ORDER TEST FOR OPTIMALITY
OF BANG~BANG CONTROLS

A13637S

Alberto Bressan

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street

Madison, Wisconsin 53705

November 1983

{(Received September 20, 1983)

Approved for public release

nnc FiLt oo, Distribution uniimited

[ IR l

| f:-

| Sponsored by ,‘ .,\. TLE cT
U. S. Army Research Office -
P. 0. Box 12211 ~ . 0EC 2 8 1983 B
Research Triangle Park b .

- North Carolina 27709 A

7




UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

A HIGH-ORDER TEST FOR OPTIMALITY OF BANG-BANG CONTROLS
Alberto Bressan'
Technical Summary Report #2596

November 1983

ABSTRACT
. k
For control systems of the form x = X(x) + 2 Yi(x)ui. a strengthened
i=1

version of the classical Pontryagin Maximum Principle is proved. The
necessary condition for optimality given here is obtained using functional
analytic techniques and quite general high-order perturbations of the
reference control. As shown by an example, our test is particularly effective
when applied to bang-bang controls, a case where other high-order tests do not

provide additional information.
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SIGNIFICANCE AND EXPLANATION

%

The determination of optimal controls is the primary problem in control
theory. The most effective tool in this respect is Pontryagin's Maximum
Principle, which provides necessary conditions for optimality, thus restrict-
ing the search to a small set of candidates among which the optimal control is
more easily found.

In cases where Pontryagin's test does not yield sufficient information,
more refined necessary conditions are known, for example Krener's High-order
Maximum Principle. The high-order test discussed in this paper states further

necessary conditions for optimality and can be particularly useful when

applied to bang-bang controls, a case often encountered in the applications,

where other high-order tests are generally ineffective.
A
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A HIGH-ORDER TEST FOR OPTIMALITY OF BANG-~BANG CONTROLS
*
Alberto Bressan

1. Introduction

Let U be a closed convex subset of the Banach space L'([O,'.l‘];i') and
consider a continuously Fréchet differentiable mapping ¢ : U+ Rn. Given
T e U, in this paper we give a high-order sufficient condition for ¢(@) to
belong to the interior of the image ¢(U). Problemg of this kind arise
frequently in control theory. Indeed, consider a control system of the form

x(t) = £(x(t)) + G(x(t))u(t) ,

x(0) = 0, u(t) €eQ for a.e. t e [0,T , ®
where Q is a compact convex subset of R and f, G are c! mappings
from R® into R* and Rn x R‘ respectively. If T 4is small enough, then
(S) yields a o map V : u + x(T,u) from the set U of admissible controls
into R'. Here x(T,u) is the point reached at time T by the solution of
(S) corresponding to the control u. A classical problem is the following:
given an admissible control 1, decide whether T is time optimal. This is
often equivalent to showing that x(T,d) lies on the boundary of the
reachable set R(T).

A well known necessary condition for optimality is given by the
Pontryagin Maximum Principle (PMP) [2,8). Krener's high order maximum
principle (HMP) [6] provides further conditions, obtained from the study of
more general one parameter perturbations uE of the control 1. If the first

order variation at the terminal point of the trajectory

1lim [x(T,u

E) - x(T,u)l/¢ (1.1)
£+0
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vanishes, a high order tangent vector can be generated, and additional
necessary conditions for extremality are found. This method yielded several
new results [3,4,5,6), especially concerning the problem of local stability.
In this case, the reference control is U(t) Z 0 and lies in the interior of
Q= [-1,+1). Hence there are several ways to locally perturb W and achieve
a cancellation in the first order variation (1.1). The HMP can be here
particularly effective. On the other hand, if U is bang-bang, Tu(t)
already lies on the boundary of Q, and only one-sided perturbations of 1
are admissible. As a result, in general there is no way of generating high
order tangent vectors, as long as only the "instantaneous®” control variations
considered in (5,6) are used. In order to develop a genuine high order test
for bang-bang controls, it is necessary to achieve the cancellation of the

first order variation (1.1) by perturbing U simultaneously in the neighbor-

hoods of two or more distinct times. This leads us to consider more general

control variations.
In the following, the variable t always denotes time, while £, ¢ are

used as variational parameters: u(f,*) or u(c,f,*) will denote controls in
L'([O,T]:ﬂ') depending continuously on the parameters &, c. In the abstract
setting considered in sections 2 and 3, the control u is regarded merely as
a point in a Banach space E, and we use the shorter notation wu(f) or
u(c,€) to indicate its dependence on one or two parameters.
Definition 1. A one-parameter admissible variational family of control
functions (AVP) for a control U on [0,T), generating a tangent vector
ve IP, is a continuous map Y : £ + u(f,*) from a nondegenerate interval
(0,€) into L'(0,71:#®) such that

w(0,¢) =T(+) , ulf,er el VvEe (0,8 ,

1im [(x(T,u(€,*)) - x(T,W(*))]/E = v .
E+0




We say that the AVF Y has order h if there exist constants Cqr (:2 for
which

0¢cc, <& ng, -sen" <, vEe 0 . (10
L

Notice that one can recover every high order tangent vector by means of the
first order derivative (1.3), via a suitable change of the parameter £. As
shown in [S5], this method differs from Krener's only in computational ease.
The above class of AVF is at the same time simpler and more general than those
studied in (5,6], hence the corresponding family of tangent vectors can be
much larger. One would like to use all of these vectors to derive a stronger
HMP.

Assume that, given suitable variational families Y i for W(i=0,...,k),
the positive span of the corresponding tangent vectors vy is all of ®'. 7o
conclude that x(T,Ud) 1lies in the interior of the reachable set R(T), one
has to construct approximate convex combinations of the vy continuously
depending on the parameters. More precisely, the Y i should be summable in
the sense of
Definition 2. Let F = {y,,...,Y,} be a finite collection of AVF for the

control U, generating the tangent vectors Vorere iV Set

X
% = {o = (cgreeeic )i e 20, ] o =1} . . (1.5)

i=0
F is summable if there exist E > 0 and a continuous map (c,§) + ul(c,E,*)

from Ak x [O.El into L‘([O,T]tf‘) such that, for all c € Ak

ulc,0,%) = (), ulc,E,*) eu Vv Ee [0,E] , (1.6)
k
Lim (x(T,u(c,&,*)) = x(T,FNIE= | ev
E+0 i=0

uniformly on Ak .




This crucial property holds for control variations of the special kind
considered in [5,6], but is not satisfied by an arbitrary collection of AVF
(see §5 for a counterexample). Our key result is that if all but one of the
Y, e F have order 1, then F 1is summable. This is first proven in an
abstract setting, then stated for the control system (S). We thus obtain a
strengthened version of the PMP which is particularly effective when applied

to bang-bang controls. Indeed, our single high order variation is allowed to

be quite arbitrary. An application of this technique is given in §S.

2. MNotations, statement of the main results.
Consider a mapping ¢ from a neighborhood of a closed subset U of a
Banach space E into K® and denote by Dé¢(u) its differential at u. We

say that ¢ is C‘

if the map u * D$(u) from E into the space of
continuous linear operators L(E,R") is continuous. Por the definition of
the operator norm on L(E,®’) and for the basic properties of differentials

our general reference is Digudonne [1].

If W€ (, by an admissible variational family (AVF) for T, generating

a tangent vector v € K', we mean a continuous map Y : £ + u(f) from (0,1}

into (U such that

u(0) =3, u(f) ey v Ege 0,1 , (2.1)
lim [¢(u(E)) - ¢@N/E=v . (2.2)
E+0

If, for some 0 < C, < C, <« and all £ e (0,1),

2

c, < £-1Iu(€) -t < c, (2.3)

we uy' that Y has order h. We write B{x,r) for the closed ball centered

at x with radius r. The Euclidean norm on R’ and the operator norm on

the set of n X m matrices are both written as |°|, while double bars are
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used for the norms 0«1 in Banach spaces such as E or L(E,RK"). 1Int A,
A, :; A denote the interior, the boundary and the convex closure of a set
A. With these conventions we have

Theorem 1 - Let U be a closed convex subset of a Banach space E, and let

¢ bea C mapping from a neighborhood of U into K'. Assume UWe U and
let v, ¢ £+ ui(E) be AVF of U generating the tangent vectors v,

(1’0,.-.,’(). lg_ 0 € int ;{VO""'vk} g Rn and Y‘,OOO,Yk have order 1,

then ¢(W) @ int ¢(U).
From this result, a sharper form of Pontryagin's maximum principle for
the system (S) can be derived. To fix the ideas, assume that £ and G

are C' on B{O,xr) < R f.» G, will denote partial derivatives. Let

sup{1£(x)|, IG(x)|; x e B(O,r)} < M,

-1
sup{lwl; w e Q} < My, 0 <T < (M + MM) T o

This guarantees that, for every control u € L'([O,T]yin) taking values in

Q, ful < M_T and there exists a unique solution t + x(t,u) of (S) defined

2
on (0,T), taking values inside B(0,r). Notice that the open ball

B={ue L1:lul < M2T} is a neighborhood of the set of admissible controls
U= {ue L'([O.T]:Rm); u(t) e @ a.e. in [(0,T]} .
We assume that 2 is closed, bounded and convex, thus the same holds for U.
The map V : B + c°(lo,rlxi9) that associates to each control u the
corresponding solution x(¢,u) of (§) is continuously Fréchet differentiable.
Indeed V§ is implicitly defined by the equation ¥(u) = ¥(u,y{u)), with
Y(u,x)(t) = i £(x(s))ds + |§ G(x(s)lu(a)as - (2.4)

The map Y can be thought of as the composition 12 . Y,, defined by

Y,(u,x)(t) = (u(t),f(x(t)),G(x(t))) ,

Y, (u,y,,y,)(t) = I8 v (s)as + [T y (s)uls)as .




Clearly !1 is C’ and !2 is bilinear. Hence Y 1is C‘ and the same
holds for ¥, because of the implicit function theorem ([1], pg. 275). An ‘

application of Theorem ! yields

Theorem 2 - let T be an admissible control for the system (8) and assume .
that x(t,3) € dR(T). Then, for every tangent vector v, generated by a
(possible high-order) admissible variational family Yo for U, there exists

and_absolutely continuous nonzero n-vector valued function ¢t + A(t) on

[0,T) which satisfies

A(T) » Yo <0 (2.5)

Ae) = aA(e)[£, (x(e,T)) + G (x(e, T )(e) ]

Ae)G(x(¢,T))T(t) = max{A(t)G(x(t,T))u; u € 9} (2.7)
for almost every t in [0,T).

3. Proof of Theorem 1!
Assume that 0 € int ;{vo....,vk}. From the family {vo,..-,vk} choose

[ ]
n + 1 nontrivial tangent vectors Vg,e«. ,v:‘ such that

0 e int ;{v(',,...,v';}. Notice that, if v, 1is not one of the chosen vectors,

any other vector can play its distinguished role. For notational convenience,

assume that 0 € int ;{vo,...,vn}. Relying on the fact that Y seeesY have

order 1 we now prove

Lesma 1. The family of admissible variations F = {Yo,...,’fn} is susmable.
Proof. Define the scalar function @ by

1
a(f) = sup{luo(;) - Tal/2; 0< g <E} . (3.1)

Clearly a is a continuous, nondecreasing function with a(0) = 0. By (2.2),

for £ > 0 small enough we have

luo(E) - ul/€ > Ivollzlbb(ﬁ)l .

Therefore there exists a E > 0 such that




vgle %

<alf) <1, E/a(E) <1 (3.3)
21D () ;

for al) £ e (0,%]. Define ulc,E) on A" x [0,E] by

n
ulc,E) = uy (e ) + ) ¢, (E/a(E)) [u, (a(E)) = ug (e E)]
i=1 (3.4)

if 0<ESE , ulc,0) =% .

By (3.3), wu(c,f) is well defined and takes values inside [, being a convex

Rl S G e St e b e e
< e s e IR e o e .o

combination of members of U. as £ + O, uo(c,E) tends to U and each term
inside the summation in (3.4) tends to zero uniformly w.r.t. c. Therefore
u depends continuously on the parameters c,§. To show (1.7) we write

¢(u°(c,€)) - ¢(q) ¢lulc,E)) - ¢(uo(c05))

$lulc,B)) = (W) _
t 3 + 3 . (3.5)
As § + 0, the first term on the right hand side of (3.5) converges to
SoVo* The second term can be written as
1
Jo D#(0oulc,§) + (1-8) u (e ) « (ulc,&) - uylc E))ae
(3.6)

n
« J3[oe@ + xte,€,0]) « { ] e, (1/a(EN[u, (alE)) = uylcyt)]}as .
i=1

The continuous Fréchet differentiability of ¢ implies that x(c,f,0) =

Dé(0eu(c,E) + (1-0) uo(coﬁ)) -~ D¢(U) 1is a continuous linear operator whose

norm tends to zero uniformly in c, t as § + 0. Observe that

( (1/a(E))hu (8(E)) = uglc €I € (1/a(E)) bu (a(E)) - TN +
(3.7)

1
(1/a(6) hug(e,€) = T € ky + luj(cgl) - §12

for some finite constants ki {i=1,...,n), because the uy have order 1

and by (3.1). The limit as £ + 0 of the last term in (3.5) is therefore

give.

-




n
lim D¢(T) z (ci/G(E)) (ui(a(i)) -4a) . (3.8)
E+0 i=1

By the definition (2.2) of tangent vector, one has

O(ui(E)) - ¢(1) DQ(E)'(ui(E) - u) + o(&)
v, = 1lim = lim
£+0 ¢ £s0 ¢ ‘
(3.9)

= 1lim D¢(E)°(u1(5) - ﬁ)°5-1 .
E+0

Indeed uy is a first order AVF, hence the term o(f), which is
infinitesimal of higher order w.r.t. Iui(E) -Ul as £ + 0, is also of

higher order w.r.t. £&. Comparing (3.9) with (3.8) one concludes that

Lim [$(ulc.E) - ¢(T)] £ ' =
E+0

c.v

n
0% lim D4(T) * [u (a(E)) - T/a(f) = Y ev, .

)
+ c
i=1 1 g0 gmg 11

uniformly in c.
Using the above lemma, the proof of Theorem 1 can now be completed by an
application of Brouwer's fixed point theorem. Let & = dist(O, 3Z;{v°,...,vn})

and choose Eo > 0 so small that
n
l#Cule,E))) - &(® - €, | e,v,l < §y0872 (3.10)
i=0
for all c e An. Consider the injective map o : An > IF defined by

n
o(c) = ¢(u) + Eo ) e v, -
i=1

For x @ B(¢(T), KOG) define PFP(x) = 0(u(u-1(x),Eo)). By (3.10),
IP(x) - x| < £°6/2. For each x, © B(¢(W®), 505/2), an application of
Brouwer's theorem (([8) pg. 251) now implies the existence of some

x € B(§(W), £,8) for which F(x) = xj. Hence B(4(T), 506/2) c W) . Q.E.D.




4. Proof of Theorem 2.
Suppose that the conclusion is false. Then there exists an admissible
variational family YO for U possibly high order, that generates a tangent
: vector v, such that, for every absolutely continuous A{e¢) satisfying (2.5)
and (2.6), one has
A(t)*G{x(t,W)eT(t) < max{A(t)*G(x(t,TW))*us u € Q} (4.1)
for t in a subset J < [0,T) having positive measure. For each vector

n#0 with nev_ < 0, let Xn(°) be the unique solution of (2.6) for which

0
Xn(T) =1n, and choose a control u, € U such that

A (E)Glx(t,®)u (£) = max{xn(t)-c(x(t,ﬁ))u; ue q} (4.2)
for a.e. t €(0,T]. The continuity of Xn, G and x(+,1) and a selection
theorem (7] imply that such a measurable v exists. Define an AVF Y for
¥ by setting

ulg,) = Eun(') + (1=-E)u(-), v Ee [0,1] . (4.3)

Then, for every £, u(f) € U because U is convex, and fu(§) - G/ =
fu - T # 0, showing that Y has order one. Let I : ®10,7) » R* be the
linear projection x * x(T). From the remarks made in §2 it follows that the
map £ + x(t,u(f)) is the composition of C1 mappings, hence the tangent
vector generated by the AVF (4.3) exists and is given by

v = 1lim [{x(T,u(E)) - x(T,W))/E = HT'D¢(U)'(un - 1) =

£+0
(4.4)

Jg M(T,8)+G(x(5,T)) ¢ (u (s) - T(s))ds
where s + M(T,s) is the matrix fundamental solution of
z(t) = [£, (x(£,8)) + G_(x(£,8))T(t)]z(t)

with M(T,T) = I, and where ¢ 1is the input~-output map defined above

(2.4). By (2.6) the inner product of n and v |is




nev = [ A (TIM(T,8)*G(x(s,w) +(u_(s) - uls))ds =
(4.5)
T - -
Jo A, (8)°G(x(8,T))¢ (u (8) - TU(s))ds > 0

because of (4.1). Hence, for every nontrivial vector n with nev_< 0,

0
there exists a first order tangent vector v for which nev > 0. The
positive span of the set of first order tangent vectors together with v, is
thus the whole space X'. Theorem 1 applied to the C1 map ¢ = HT~¢ :

u * x(T,u) yields x(T,u) € int R(T), a contradiction.

5. Examples.
The assumption on the order of the control variations in Theorem 1 is

essential. Indeed, two arbitrary second order AVF need not be summable, as

shown by

Example 3. Define a time dependent gystem on R; by

(;1(t), iz(t), ;3(t)) = (0, (£)35(E)u, (£),0,(£)x, (B)uy(E)
¢1(t)u3(t)) ’ (5.1)

(x,(0),x,(0),x,(0)) = (0,0,0) ,

where t € (0,3], the smooth functions V¥4, ¥, satisfy
v(t) =0, ¥ () >0 for te (V2] ,

vz(t) =0 for te (0,1] vy (2,3] ,

(5.2
1 2 3
Jg ¥ trat = I3 v, (t)at = =j3 e tv)at = 1
and the controls satisfy the constraints
0 < u,(t) €1 (i=1,2), == “3(‘) <o (5.3)

The reachable set at time t = 3 is then

-10-




1x2 > 0} . (5.4)

R(3) = {(x1.x2,x3): x

Let U be the null control. Consider the two AVF for W:

(1) (2)

1 1 1
u (E)(¢) = (5/21005/2 ), u /2)

1
(E)(t) = (o,£/2 -

constant on the time interval ({0,3]. Notice that for { = 1,2

o' W ey 1anle = 18 . (5.5)

(2)

2 3
' (§) =B /6 = (J lu
By setting h =2, Cq =Cy = 18 in (1.4) one checks that u(1) and u
are both of second order. The endpoints of the corresponding trajectories are

x3,0' &N = €,0,00, x(3,u?) (&) = 0,-£,00 . (5.6)

1 (2)

Hence u and u generate the tangent vectors

vy = (1,0,0), v, = (0,-t,0) . (5.7)

Comparing (5.7) with (5.4), it is clear that these two AVF cannot be
sunmmable. In this example, the set of high order tangent vectors of the
special type considered in (6] is the cone I = {(0,0,x,); x, € R}. This is
of course convex and coincides here with the first order tangent cone. Notice
that the time dependency can be easily removed by adjoining a new variable
X = t.

We now illustrate a non trivial application of Theorem 2 to the study of
optimality of bang~bang controls.
Example 2. Consider the three dimensional autonomus system with scalar

control u(t) e [=1,1]:

O O . 2
(x1,x2,x3) = (u,x1,x2*kx1/2) v
(5.8)
(x1(0),x2(0),x3(0)) = (0,0,0) .
The adjoint equations for this system are
(X1,A2,A3) = (-Az-kx1X3, -13,0) N (5.9)

If |x| < 1, then a theorem of Sussmann [9] yields the existence of a T > 0

such that every time optimal control u(*) on (0,T] is bang-bang with at

afi=




most two switchings. If |k| > 1, the above result does not apply. Indeed,
for every T > 0, there exist bang-bang controls u that satisfy
Pontryagin's necessary conditions for optimality and have an arbitrarily large
number of switchings on [0,T). In order to construct a regular feedback
synthesis for (5.8) it is important to rule out the optimality of these

controls. In this direction we prove

Proposition 1. Assume k > 1. Then every bang-bang control U assuming the
value +1 on a positive neighborhood of the origin is not optimal after its

third switching time.
Proof. let U be a bang-bang control which is initially +1 and has at

least 3 switchings, and let 0 < ty < t, < t3 Dbe its first three switching
times. Fix any T > t,, smaller then the fourth switching time if there is
any. We will prove that x(T,U) € int R(T). If the classical Pontryagin's
necessary conditions do not hold for W on [0,T], we are done. Othervise,
let A(t) = (X1(t).12(t),xs(t)) be a nontrivial adjoint variable satisfying
(2.6) and (2.7), given in this case by (5.9) and

We) = sgn A (t) a.e. on (0,T] (5.10)
respectively. Our first task is to compute A(T). Set tg =0, t, = T. From
(5.9) it follows that the map t + A(t) is C1 on [0,T] and piecewise

analytic on [t1_1,ti] (i=1,...,4). 1In particular, we have

A(8) = A3(0),  Aj(e) = A,(0) - A, (5.11)
°i1(t) = A,(1 - k sgn A (t)) a.e. on [0,T] (5.12)
Mg =0 (1=1,2,3) . (5.13)

Hence 11(t) is a polynomial of degree 2 in t on each subinterval
[t1_1,ti]. 1f l1(t) =0 for some t € (t1,t2), then we would have

A(t) 2 0, against the assumptions. Thus X1(t) 0 for ty <t <t, By




(5.13), X1 is not identically zero. Together with (5.12), this implies

Aa > 0. Multiplying 13 by a positive scalar, we can therefore assume

Xa(t) 2 1. This, together with (5.12) and (5.13), determines X,(t)

uniquely:
Ate) = 12K e e
1(t (t t1 (t tz), for t € [t1,t2] (5.14)
A(t) = L (t-t ) (et~ £ S
1 t 2 t tz t t3)' or t € [tz'ts’ . (5.15)

The computation of i1(e2) using alternatively (5.9), (5.14) and (5.15)
yields
A i(e,) = 2h,(e,) = kx(t,) = =) (t,) = k(2t,~t,) =
(5.16)
k+1 - k=1 -
— (t,mt,) S (tyt,)

Notice that the above expressions coincide because ) is C‘. From (5.9),
(5.16) we deduce
XZ(T) = t1(1 - 3k)/2 + t2(1 +k)/2-T . (5.17)
For notational convenience, set a = t,, b = t,=t,, ¢ = t3=t,, 4 = T-t,.
So far, we have proven that, up to a positive scalar factor, there exists a
unique adjoint variable A(t) that satisfies (2.6) and (2.7) on (0,T]. In
particular, (5.17) and the last equality in (S5.16) yield

k -1
2

A(T) = (A1('r), ~ka + b~-c=-4, 1) , (S.18)

(k + )b=(k - 1)c . (5.19)
The second part of the proof consists in the construction of a second
order AFV for U generating at t = T a tangent vector v having a positive
inner product with A(T). A lengthy but elementary computation (see Appendix)

shows that the control U steers the system from the origin to a point

x(T, W) whose coordinates are

13-

o=




x'('!.“')'l-b*c-d,

2
% (2, = 1272 - (brcra)? + (cta)2 T &
(5.20)
3 3 3_ 3 ¢
(1,0 = (1372 - (brcra)® + (cta)® - &1 /3 +

tad + (v-a)® + (cb#a)} + (a-ctb-a)3f2)x/3 .

For t € [0,T] and & > 0 guitably small define

1 1 1
ul()(t) =1 if t e [0,a+£6 clu [a+b+€é(b+c), '.l'-cl-'-E'ﬁ b) ,

1 1 1
WENE) = =1 if ¢ e (atE2c,atbHe’2 (be)) U (P-a+E2a,1] .

The coordinates of x(T,u(f)) are thus obtained from (5.20), replacing

1/& 1& 1& 1/
a,b,c,8 by att’2¢, btE2b, c-t’2¢, 3-E’2b respectively. Using (5.19), one

1
checks that in the expression of x(T,u(f)) all terms in 5/2 cancel, hence
the map £ » u(f) 4is an AVP of U of order 2. The computation of the
corresponding tangent vector v defined by (1.3) yields (see Appendix)
v= (0, 2, b+ c+ 24+ k(2a-Db + c))bc . (5.21)
The inner product of (5.18) and (5.21) is
2
A(T)ev=(xk = 1)bc >0 .

This shows that the necessary conditions for extremality given in Theorem 2 do
not hold for q, hence x(T,W) € int RT). For any T > t;, U is not time
optimal after T, therefore U is not optimal after its third switching

time.
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APPENDIX

Por the control U considered in Example 2, the coordinates of the

point x(T,q) are
- T
X (T,T) = | u(s)ds = a-btc-a

% (T,0) = ]z (T-s)u(s)ds = '1'2/2 - (b+c*d)2 + (cﬂ'd)2 - &

2 .
o e R 2 s o e

2
x3(T,U) = ]g 'E—;"L u(s)ds + % ]: (81(lrn-))2dl

2 i

= [(& _1a*D atbte _ (T (T-g) .
“0 Ja * Ja+b Ja+b+c] 2 ds

+ 5[)% o%as + ]:ﬂ’(za-s)za- + }::rc(.-zmza)za- +JT . (2a-2b+2c-8)2as) :

atbtc i
L ST VR T
6 3 3 3

+§f[zgi+m§nﬁ+us:gnﬁ+m¢3haﬁ]

The coordinates of x(T,u(f)) are:
X, (T,u(€)) = x4 (T,¥)

1 1, 2
xz(T,u(E)) = '1'2/2 = (btcta) - cE/z )2 + (c*d-(b*c)ﬁlz)

1
- (a5672)% = %, (T, + 2bcE

1 1
xy(T,0(6)) = 3 [1°/2 = (brord = c€2)° + (cra - (rc)E?)’

1 1 1
- (abE2)°) + £ [(arct’)? + (braribmere2)’

; 1
| + (c-bra-bE’2)> + (a-c+b-a)/2]

1 1
= xy (1,8 + (b2ctbcl 162+ Kb ebe?162
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2 3/2)

+ [bc2+b c+2bcd]€ + k[2abc-b2c*bc2] + (&
= %3 (T, ) + belbtct2atk(2a-b+c)]E

because, by (5.19), bt+ctk(b~c) = 0. This yields (5.21).
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